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1. Introduction

In the AdS/CFT correspondence, boundary conditions for bulk fields are related to the

specification of the dual CFT [1 – 4]. In particular, small changes in the bulk boundary

conditions correspond to deformations of the dual CFT Lagrangian. Bulk scalar fields in

AdSd+1 with mass in the range −d2/4 ≤ m2 < −d2/4 + 1 provide a particularly inter-

esting example of this correspondence. As indicated by the work of Breitenlohner and

Freedman [5, 6], such scalar fields admit a variety of possible boundary conditions. In

particular, one may fix either the faster or slower falloff part of the scalar field at infinity.

The two resulting bulk theories correspond to two different dual CFTs, in which the

field φ is dual to operators of dimensions ∆− and ∆+ = d − ∆− respectively, where

d/2 ≥ ∆− > d/2 − 1. In [7, 8], it was observed that a general linear boundary condition,

relating the faster falloff part to the slower, corresponds to a double-trace deformation,
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adding a term fO2 to the Lagrangian of the CFT. Starting from the ∆− CFT, this is is a

relevant deformation, which will produce an renormalization-group flow which is expected

to end at the ∆+ CFT in the IR; evidence for this picture has been obtained in [9 –

11]. Since a double-trace operator corresponds to a multiparticle state, the double-trace

deformations in the CFT have also been related to worldsheet non-locality in the bulk

string theory [12, 13].

In the present work, we conduct a similar analysis for vector fields. The possibility of

general boundary conditions for vector gauge fields was first raised in [6] for d = 3. In a

recent thorough analysis by Ishibashi and Wald [14], it was shown that for electromagnetic

and gravitational perturbations in AdS spacetime, both the slow- and fast- falloff pieces

of certain parts of the field are normalizable for d = 3, 4, 5; i.e., for bulk spacetime dimen-

sions 4, 5 and 6. As a result, these fields admit general classes of boundary conditions.

We investigate the dual CFT description of such general theories, focusing on the electro-

magnetic perturbations for simplicity. As in the scalar case, we will find different CFTs

corresponding to fixing the faster and slower falloff pieces of the bulk field. Furthermore, a

general local linear boundary condition corresponds to a deformation of the former theory

by a relevant operator, generating a renormalization-group flow which should lead to the

latter.

However, a number of interesting new features arise in the vector case. Some of these

are associated with gauge invariance. In the slow falloff CFT, the operator dual to the bulk

photon is a CFT gauge field instead of the more familiar R-symmetry current. As a result,

a general boundary condition is dual to a field theory for which the gauge-invariant action

is non-local, though it becomes local in the gauge picked out by the boundary condition.

Other features have to do with the possibility of deforming only certain pieces of the gauge

field, breaking Lorentz invariance as a result.

After posting the first version of this paper on the hep-th arxiv, we became aware

of a body of literature with results overlapping those presented here for the case d = 3.

In particular, the fact that ‘conjugate’ boundary conditions in AdS4 are dual to a CFT3

with a dynamical gauge theory was described in [15] and discussed further in [16 – 19].

Certain aspects of the general multi-trace deformations and renormalization group flows

were discussed in [16 – 18], and these references also study higher spins for d = 3. For spin

1, the conjugate CFT is related to the quantum Hall effect [20]. For higher spins, there is

a relation to higher spin theories in AdS4; see [21, 22] for recent reviews. This earlier work

focuses largely on the CFT point of view; our work provides a bulk counterpart, considers

certain details required to yield a fully local theory, and addresses extensions to d = 4, 5,

and the allowed boundary condition for d = 2.

We begin by carefully reviewing the analysis of the scalar case in section 2. We then

address boundary conditions for vector gauge fields in section 3, drawing heavily on the

results of [14]. In section 4, we develop our proposal for the dual CFT description. Some

final remarks concerning both vector fields and extrapolations to tensor fields are contained

in section 5.
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2. Scalar fields: general linear boundary conditions and double-trace de-

formations

This section reviews the relation between boundary conditions for scalar fields and the

associated deformations of the dual field theory. This correspondence was conjectured

in [7, 8], derived in [23], and studied further in, e.g. [24 – 27]. Our treatment below is

essentially a Lorentzian version of [23], extended in section 2.2 to the case of scalars with

logarithmic behavior near the boundary of AdS. For simplicity, we use the familiar toy

model of AdS/CFT in which the bulk theory is replaced by a real scalar test field φ in

AdSd+1.

2.1 Scalars with m2 > m2
BF

As stated above, we consider a real scalar field which propagates on a fixed spacetime. We

take this spacetime to be AdSd+1, with AdS length scale ` = 1. It is convenient to use

coordinates such that the AdSd+1 metric is

ds2 = gabdy
adyb = −(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ2

d−1, (2.1)

where dΩ2
d−1 is the round metric on the unit Sd−1.

Since we are interested in boundary conditions, we first describe the asymptotic behav-

ior of the field. Suppose that our scalar is associated with a potential V (φ) with squared

mass m2 = 1
2V
′′(0). We restrict attention here to the case where the mass is close to, but

slightly above, the Breitenlohner-Freedman bound [5, 6]:

−d
2

4
+ 1 > m2 > −d

2

4
. (2.2)

For such values of m, one finds that all solutions to the equations of motion take the

asymptotic form

φ→ α(x)

rλ−
+
β(x)

rλ+
, (2.3)

where x are coordinates on null infinity (∂M, also known as the conformal boundary) and

where

λ± =
d

2
± 1

2

√
d2 + 4m2. (2.4)

Note that (2.2) implies

2 > λ+ − λ− > 0. (2.5)

The case m2 = −d2/4 involves various logarithmic terms and will be treated separately in

section 2.2 below.

The boundary condition should be chosen to yield a well-defined phase space. This

occurs when the symplectic structure is finite and the symplectic flux1 through infinity

vanishes, so that the symplectic structure is conserved.

1The symplectic flux for a scalar field is proportional to the Klein-Gordon flux. See e.g. [28, 29], for

general comments on symplectic structures and their role in quantization.

– 3 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
5

The mass range (2.2) is precisely the range for which all solutions (2.3) are normalizable

with respect to the symplectic structure (see e.g. [30]). Thus, the only constraint is the

requirement that the flux through infinity vanish. For two vectors δ1φ, δ2φ tangent to the

space of solutions, the symplectic flux through a region R of null infinity is

ωR(δ1φ, δ2φ) = (λ+ − λ−)

∫

R

√
Ω(δ1αδ2β − δ1βδ2α). (2.6)

If our boundary condition is to force (2.6) to vanish for all regions R, then α must be an

ultra-local function of β; i.e., α(x) can depend only on β(x) at a point, and cannot depend

on derivatives of β:

α(x) = Jα(x, β) or β(x) = Jβ(x, α). (2.7)

Note that in each case, vanishing of (2.6) implies the existence of a potential Wα(β), Wβ(α)

such that

1√
Ω

δWα

δβ(x)
= (λ+ − λ−)Jα(x, β)

1√
Ω

δWβ

δα(x)
= −(λ+ − λ−)Jβ(x, α), (2.8)

where the normalization factor (λ+ − λ−) on the right-hand side was chosen for later

convenience. One may further show that all such boundary conditions remain valid when

the scalar field is coupled to gravity; see [31] for a general analysis and [32 – 37] for direct

calculations. We recall the implications of various choices of such boundary conditions for

AdS/CFT below.2

2.1.1 Fixing α

Because AdS is not globally hyperbolic, we must impose a boundary condition on the

scalar field. Let us first suppose that one fixes the leading behavior by choosing some fixed

function Jα on ∂M and imposing

α(x) = Jα(x), for x ∈ ∂M. (2.9)

The coefficient β(x) is then to be determined from the equations of motion and the initial

conditions which, for the moment, we take to be given by specifying fixed values of φ on

Σ±:

φ(x) = φ±(x), for x ∈ Σ±. (2.10)

A valid action must be stationary on solutions. In particular, we wish the action to be

stationary under all variations which preserve the boundary conditions (2.9) and (2.10).

To this end, consider the action

Sα=const = −
∫

M

(
1

2
∂φ2 + V (φ)

)√−g − 1

2
λ−

∫

∂M

√
−hφ2, (2.11)

2While it would not correspond to our usual notion of a local bulk theory, one could choose to require

the integrated flux (2.6) to vanish only for a certain family of regions R. For example, if vanishing flux

is required only for regions bounded by t = constant surfaces then the boundary condition Jα(x, β) can

be taken to be non-local in space (but still ultra-local in time), so long as δJα(x)
δβ(y)

is an appropriately self-

adjoint operator; i.e., so long as the potential Wα continues to exist. Such settings may also be of interest

for AdS/CFT. Further generalizations should also be possible if one is willing to add extra boundary degrees

of freedom.
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where M denotes a region of AdSd+1 bounded to the past and future by Cauchy surfaces

Σ−,Σ+, though we abuse notation by continuing to use ∂M to denote only the boundary

at null infinity. As noted in [27], the action (2.11) is equivalent to the “improved action”

advocated by Klebanov and Witten (see equation (2.14) of [30]) for configurations satisfy-

ing (2.3). In (2.11), h denotes the determinant of the (divergent) induced metric on null

infinity.

We now compute variations:

δSα=const =

∫

M

√−g
(
∇2φ− V ′(φ)

)
δφ−

∫

∂M

√
−h(na∂aφ)δφ−λ−

∫

∂M

√
−hφδφ, (2.12)

where n is the outward pointing unit normal to ∂M (i.e., with nanbgab = ±1) and we have

used (2.10) to show that the boundary terms at Σ± vanish. We have

∫

∂M

√
−h(na∂aφ)δφ = −

∫

∂M

√
Ω(rλ+−λ−λ−αδα + λ−αδβ + λ+βδα),

∫

∂M

√
−hφδφ =

∫

∂M

√
Ω(rλ+−λ−αδα + αδβ + βδα), (2.13)

where Ω is the determinant of the metric on the unit Sd−1 sphere, and we have neglected

terms which vanish in the r →∞ limit. In particular, we have used the fact that na∂a =

(
√
r2 + 1)∂r = (r +O(r−1))∂r and (2.5). As a result, one finds

δSα=const =

∫

∂M

√−g
(
∇2φ− V ′(φ)

)
δφ+ (λ+ − λ−)

∫

∂M

√
Ωβδα. (2.14)

Since (2.9) implies δα = 0, we see that (2.11) indeed provides a valid variational principle

for such boundary conditions. A similar calculation shows that under the same boundary

condition the action Sα=const is also finite when the equations of motion hold.

Now, the variation of a path integral with respect to some family of deformations may

be taken to define an operator. Furthermore, in the semi-classical limit, variations of the

path integral are given by variations of the on-shell action. Consider then the operator Oα
in the dual CFT whose matrix elements are given in this approximation by the variation

of the bulk on-shell action with respect to Jα(x):

〈Oα〉 =
1√
Ω

δSα=const

δJα
= (λ+ − λ−)β. (2.15)

It is convenient to denote a generic matrix element by 〈Oα〉 and to leave implicit the

specification of states between which the matrix element is computed.

The choice of states between which one computes the matrix element 〈Oα〉 determines

the boundary conditions at Σ± and as well as additional boundary terms at Σ± which must

be added to Sα=const. For simplicity, we have suppressed such details here. As discussed

in [38], the net result of adding the additional terms and altering the boundary conditions

is that (2.14) is unchanged, though the solution on which (2.14) is evaluated depends on

the choice of states.
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2.1.2 Fixing β

For masses in the range (2.2), one may similarly consider a theory with boundary condition

β = Jβ(x) [5, 6]. An appropriately stationary action for such theories is given by

Sβ=const = −
∫

M

(
1

2
∂φ2 + V (φ)

)√−g +

∫

∂M

√
−hφnaI∂aφ+

1

2
λ−

∫

∂M

√
−hφ2

= Sα=const − (λ+ − λ−)

∫

∂M

√
Ωβα, (2.16)

for which we have

δSβ=const =

∫

M

√−g
(
∇2φ− V ′(φ)

)
δφ− (λ+ − λ−)

∫

∂M

√
Ωαδβ. (2.17)

In each such theory, there is an operator Oβ associated with deformations of Jβ :

〈Oβ〉 =
1√
Ω

δSβ=const

δJβ
= −(λ+ − λ−)α. (2.18)

As conjectured in [30] and discussed in detail in [10], the bulk theory with β = 0 boundary

conditions is dual to a CFT for which the generating functional for planar diagrams is

related to that of the α = 0 theory.

2.1.3 More general boundary conditions

Two particular classes of boundary conditions were considered above, defined by fixing

either the value of α or β on ∂M. We now wish to consider the more general boundary

conditions (2.8), starting with the case defined by a potential Wα(β). From (2.14) we

see that with the boundary condition (2.7) the original action Sα=const (2.11) is no longer

stationary on solutions. The full action must be of the form

SWα = Sα=const +B(α). (2.19)

On-shell, and for fixed boundary conditions at Σ±, we clearly have

δSWα =

∫

∂M

√
Ω

[
(λ+ − λ−)βδα +

1√
Ω

δB

δα
δα

]
, (2.20)

so we must choose B to satisfy

δB

δα
= −(λ+ − λ−)β

√
Ω. (2.21)

Let us now ask about the field theory dual of the bulk theory defined by the general

boundary condition (2.7). The action of this theory will differ from the action SFTα=0 of

the α = 0 CFT by some term ∆SFT . One may calculate how such a theory is related to

the α = 0 CFT by considering a continuous deformation along the one-parameter family

of boundary conditions α = λJ(x, β) for λ ∈ [0, 1]. The argument below is essentially a

Lorentzian version of the argument of [23].

Suppose that one deforms some such boundary condition by a small amount δλ. We

may compute the corresponding deformation δSFT = ∂λS
FT δλ of the dual field theory

– 6 –
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action using the AdS/CFT version [38] of the Schwinger variational principle [39 – 41]

to compute the matrix element of ∂λS
FT between two states |ψ1〉, |ψ2〉. Let us define

Ŵα,λ(ψ1, ψ2) := 〈ψ1|(SFTλ − SFTα=0)|ψ2〉. The Schwinger principle relates the variation of

the inner product 〈ψ1|ψ2〉 element to the variation of the action as follows:

∂λŴα,λ(ψ1, ψ2) := 〈ψ1|∂λSFT |ψ2〉 = −i∂λ〈ψ1|ψ2〉 = ∂λS
AdS
ψ1ψ2

, (2.22)

where the function SAdS
ψ1ψ2

is built from the action SWα (2.19), together with the bulk wave

functions corresponding to the states |ψ1〉, |ψ2〉. Furthermore, the boundary conditions for

the variation are such that SAdS
ψ1ψ2

on the right-hand side of (2.22) is to be evaluated on the

particular solution which causes all Σ± boundary terms in δSAdS
ψ1ψ2

to vanish [38]. This is

just the condition that the classical solution considered is the proper stationary point of

the path integral to approximate matrix elements between |ψ1〉 and |ψ2〉.
As a result, (2.22) is given just by the terms in δSWα on ∂M:

∂λŴα,λ = ∂λB +

∫

∂M

√
Ω(λ+ − λ−)β∂λα. (2.23)

Functionally differentiating this relation with respect to β yields:

∂λ
δ

δβ
Ŵα = ∂λ

δB

δβ
+
√

Ω(λ+ − λ−)∂λα+

∫

∂M

√
Ω(λ+ − λ−)β∂λ

δα

δβ
=
√

Ω(λ+ − λ−)∂λα,

(2.24)

where in the last step we have used (2.21) and the rule δB
δβ =

∫
∂M

δB
δα(x)

δα(x)
δβ .

When acting on α, the derivative with respect to λ produces two types of terms: those

associated with the explicit variation of the form of the boundary condition (2.7) which

relates α to β as well as an “implicit” change resulting from a possible change in the value

of β itself. The point here is that β is in general evaluated at some point between Σ−
and Σ+, and so must be determined from the fixed boundary conditions at Σ± via the λ-

dependent dynamics. As a result, we see that Ŵα,λ(ψ1, ψ2) = Wα,λ(β) for a function Wα,λ

whose explicit form satisfies a version of (2.24) in which the right-hand side is understood

to represent only the explicit change in the form of α. Integrating from λ = 0 to λ = 1,

and using αλ=0 = 0 and Wα,λ=0 = 0 then yields

1√
Ω

δWα,λ=1

δβ
= (λ+ − λ−)α, (2.25)

so that Wα,λ=1 is just the potential Wα in (2.8) which was guaranteed to exist by (3.5). The

result (2.25) gives a version of the relation from [7, 8] consistent with the normalizations

of (2.15).

Using large N factorization, we see from (2.15) that

∆SFT = Wα

∣∣
β= 1

λ+−λ−
Oα +O(1/N), (2.26)

since the matrix elements of the left and right-hand sides agree between any two states

|ψ1〉, |ψ2〉, up to 1/N corrections.

– 7 –
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Similarly, one may show that the field theory action differs from that of the β = 0

CFT by the term

SFT − SFT
β=0 = Wβ

∣∣
α= −1

λ+−λ−
Oβ +O(1/N), (2.27)

where Wβ satisfies
1√
Ω

δWβ

δα
= −(λ+ − λ−)β. (2.28)

2.2 Saturating the Breitenlohner-Freedman bound

Let us now consider the case saturating the Breitenlohner-Freedman bound, where the

asymptotic behavior is

φ→ α(x) ln r

rd/2
+
β(x)

rd/2
. (2.29)

In analogy with (2.11), consider the action

Sα=0 = −
∫

M

(
1

2
∂φ2 + V (φ)

)√−g − 1

2
λ−

∫

∂M

√
−hφ2, (2.30)

for which we find

δSα=0 = −
∫

M

√
Ωα(ln rδα+ δβ). (2.31)

We see that Sα=0 yields a satisfactory variational principle only for the boundary condition

α = 0.

To fix α to some other value (α = Jα(x)), we can use

Sα=Jα = Sα=0 +

∫

∂M

√
ΩβJα. (2.32)

Performing the usual calculation then yields

〈Oα〉 =
1√
Ω

δSα=const

δJα
= β. (2.33)

Furthermore, if we deform the α = 0 theory to a theory with boundary conditions α =

J(x, β) satisfying (3.5), the arguments of section (2.1.3) lead to the conclusion that the

action of the dual field theory has been deformed by the addition of Wα(Oα) where

1√
Ω

δWα

δβ
= α. (2.34)

In the same way, considering deformations of the β = 0 theory yields

〈Oβ〉 =
1√
Ω

δSβ=const

δJβ
= −α, (2.35)

and
1√
Ω

δWβ

δα
= −β. (2.36)

However, in this case the β = 0 theory is not precisely conformal [7]. Instead, it has a

logarithmic behavior associated with the ln r in (2.29).
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3. Boundary conditions for vector fields

In section 2 above, we reviewed the freedom of choosing boundary conditions for scalar

fields. It is natural to expect that similar choices of boundary conditions are allowed

for spinors, vectors, and tensor fields in AdSd+1 with similar interpretations in terms of

deformations of the dual field theory. In the scalar case, the range (2.2) of masses for

which such boundary conditions are allowed depends on the dimension d. One expects

similar results for higher spin fields but, for the vector and tensor case, we note that one

particular value of the mass (zero, in the obvious convention) will be associated with gauge

invariance. Thus, if one focuses on either vector gauge fields or the linearized graviton, one

expects general boundary conditions to be allowed only for certain dimensions d. In fact,

such boundary conditions exist for d = 3, 4, 5, though only for d = 3 will they preserve

Lorentz invariance.

For simplicity, we focus here on case of a vector field Aµ satisfying the source-free

Maxwell equation

∇νF µν = 0, (3.1)

though the tensor case is clearly of interest as well. From our perspective, the fundamental

question is what boundary conditions turn the space of solutions to (3.1) into a well-

defined phase space. Any such setting leads to a well-defined (though not necessarily

renormalizable) framework for perturbative quantization [28, 42, 43]. In particular, we

ask under what boundary conditions is the symplectic structure both finite and conserved,

meaning that no symplectic flux flows outward through the AdS boundary ∂M.

3.1 Symplectic flux through ∂M
Let us first consider the symplectic flux through a region R ⊂ ∂M of null infinity. We

will take our Maxwell field to have the usual symplectic structure:

ωR(δ1A, δ2A) = −
∫

R

√
−hnµ(δ1A

νδ2Fµν − δ2A
νδ1Fµν). (3.2)

One might also consider modifying (3.2) by the addition of boundary terms. We will not

do so here, though one should bear in mind that allowing such generalizations will enlarge

the space of allowed boundary conditions derived below.

Introducing indices I, J,K . . . which run over directions in ∂M, it is clear that the

flux (3.2) vanishes whenever the pull-back AI to ∂M of Aµ is appropriately related to the

projection F I to ∂M of

F ν := −
√
−h√
Ω
nµF

µν = −rdnµF µν , (3.3)

where the factor of −rd is chosen to simplify later expressions. That is, we wish to impose

either

AI = JAI (x, F
∣∣
∂M) or F I = JF I (x,A

∣∣
∂M), (3.4)

where
∂JAI
∂F J

and
∂JF I

∂AJ
(3.5)

– 9 –
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must be symmetric in order for ωR to vanish. The symmetry conditions (3.5) are just

the integrability conditions for the boundary conditions (3.4) to be specified in terms of

potentials Wα,Wβ such that

JAI = − 1√
Ω

δWA

δF I
, or JF I =

1√
Ω

δWF

δAI
. (3.6)

Since the boundary conditions (3.4) are local on ∂M one expects that these theories

are fully local. In particular, one expects that the advanced and retarded Green’s functions

G±(x, y) vanish unless x and y are connected by a causal curve.

Before proceeding, let us make a few observations about the effects of gauge symmetry

and charge conservation. In (3.6), we considered WA to be some fixed functional of an

arbitrary vector field F I on the boundary. However, due to charge conservation, F I is

divergence-free on-shell:

DIF I = 0, (3.7)

where DI is the covariant derivative on the boundary. Thus, if one instead considers

WA as a functional of the on-shell fields, the variations of F I are constrained by (3.7)

and the functional derivatives (3.6) are ill-defined. However, the ambiguity is just that

associated with the gauge freedom; under a gauge transformation Aµ → Aµ +∂µΛ we have

JA,I → AI +∂IΛ. Similarly, due to (3.7), we must have DIJF I = 0 on shell. Thus, on shell

and when the boundary condition holds, WF must be equal (up to boundary terms at Σ±)

to some gauge-invariant functional of AI .

3.2 Normalizability and boundary conditions

We now turn to the question of normalizability of the modes with respect to the symplectic

structure. A related normalizability criterion was analyzed in [14] by Ishibashi and Wald,

whose results will be of central use below. The results of [14] are stated in terms of a

decomposition of the vector field Aµ into vector and scalar parts with respect to some

SO(d) symmetry in AdSd+1, which we now recall.

3.2.1 Preliminaries

We begin by introducing notation in order to recall the results of [14] and to reformulate

these results in a more transparent form. One notes that spheres invariant under the SO(d)

symmetry foliate the spacetime, and that the spheres themselves can be labelled by the

coordinates ya, a = 0, 1 with y0 = t, y1 = r. It is convenient to introduce an associated

two-dimensional metric

d̂s
2

= ĝabdy
adyb = −(r2 + 1)dt2 +

dr2

r2 + 1
, (3.8)

with metric-compatible covariant derivative ∇̂a, and Levi-Civita tensor εab satisfying εrt =

1. On the unit sphere Sd−1, we introduce coordinates zi, i = 1 . . . d − 1, and we take the

metric and covariant derivative on the unit sphere to be Ωij, Di.
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It is useful to introduce orthonormal bases of scalar and vector eigenmodes of the

Laplacian on Sd−1, satisfying

(D2 + k2
S)SkS = 0, (3.9)

∫

Sn
SkSSk′S = δkS ,k′S , (3.10)

(D2 + k2
V )Vi,kV = 0, ΩijDiVj,kV = 0, (3.11)

∫

Sn
Vi,kV Vj,k′V Ωij = k2

V δkV ,k′V , (3.12)

where D2 = ΩijDiDj . The normalization (3.12) differs from the one used in [14], but is

useful to display certain parallels between the vector and scalar parts.

Using the above bases, one can decompose Aµ into a vector and scalar part with respect

to SO(d):

Aµ = AVµ +ASµ , (3.13)

where

AVµ dx
µ =

∑

kV

φV,kV Vi,kV dz
i, (3.14)

and

ASµdx
µ =

∑

kS

AakSSkSdy
a +AkSDiSkSdz

i. (3.15)

Gauge transformations affect only the scalar part; the gauge-invariant information in the

scalar parts is contained in a scalar mode φS,kS defined by3

∇aφS,kS = εabr
d−3(∇bAkS −AbkS ). (3.16)

We emphasize here that φS,kS , φV,kV , AkS depend only on the ya coordinates; that is, they

are fields only on the two-dimensional quotient space AdSd+1/SO(d). In [14], it was found

that for these two scalars fall off at infinity as

φV,kV = αV,kV r
0 + βV,kV r

2−d +O(r−2) +O(r−d), d 6= 2 (3.17)

φS,kS =

{
αS,kSr

d−4 + βS,kSr
0 +O(r−2) +O(rd−6) for d 6= 4

βS,kS + αS,kS ln r +O(r−2 ln r) for d = 4
. (3.18)

Note that there are no vector modes for d = 2, as all vector harmonics with non-zero

angular momentum on S1 are the gradients of scalars.

Equations (3.17) and (3.18) are the main results we take from [14], but it will be useful

to summarize these results in a somewhat more local and covariant form. To this end we

construct fields αS , βS , αi, βi on the boundary from the modes αS,kS , βS,kS , αV,kV , βV,kV as

follows:

αS(zi, t) :=
∑

kS

αS,kSSkS , βS(zi, t) :=
∑

kS
βS,kSSkS ,

αi(z
i, t) :=

∑

kV

αV,kV Vi,kV , βi(zi, t) :=
∑

kV
βV,kV Vi,kV . (3.19)

3Note that such scalar modes are defined only for on-shell field configurations; the form on the right-hand

side is closed as a consequence of the equation of motion (3.1).
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Similarly, we introduce

φS :=
∑

kS

φS,kSSkS , and the “pure gauge” field A(zi, t, r) :=
∑

kS

AkS(t, r)SkS , (3.20)

so that we may write

φS =

{
αSr

d−4 + βSr
0 +O(r−2) +O(rd−6) for d 6= 4

αS ln r + βSr0 +O(r−2 ln r) for d = 4
, (3.21)

Ai = DiA+ αi(z
i, t)r0 + βi(z

i, t)r2−d +O(r−2), (3.22)

At = ∂tA+ r5−d∇̂rφS = ∂tA+ cS(d)αS +O(r2−d) +O(r−2), (3.23)

and

Ar = ∂rA+ r1−d∇̂tφS , (3.24)

where

cS(d) =

{
(d− 4) for d 6= 4

1 for d = 4
. (3.25)

Furthermore, note that Fab = εabF where

F = −(1/2)εabFab = −∇̂ar3−d∇̂aφS = D2φSr
1−d, (3.26)

and where the last step follows from the equation of motion for φS (eq. (67) from [14]).

Thus we may write

F t = −rdnµF µt =

{
D2(αSr

d−4 + βS) +O(rd−6) +O(r−2) for d 6= 4

−D2(αS ln r + βS) +O(r−2 ln r) for d = 4
, (3.27)

and

F i = −rdnµF µi = −Ωij
[
∇̂tDjφS + rd−2nµ∇̂µ(Aj −DjA)

]

=





Ωij
(
rd−4∇̂tDjαS + ∇̂tDjβS − (2− d)βj

)
+O(r−2) +O(rd−6) for d 6= 4

Ωij
(
∇̂tDjαS ln r + ∇̂tDjβS − (2− d)βi

)
+O(r−2 ln r) for d = 4

,(3.28)

These results summarize the asymptotic behavior of the gauge field and form the corner-

stone of the normalizability analysis below and in [14].

3.2.2 Normalizability of the symplectic structure

The most familiar AdS/CFT boundary conditions for a vector field are to fix AI on the

boundary [2]. From (3.14), (3.22), (3.23) we see that this corresponds to fixing αi, αS ,

and also the “pure-gauge” field A. This is true even for d = 2, 3, where βS is the slower

fall-off part of φSkS . This alone is enough to make one suspect that more general boundary

conditions should be available, and to motivate a general study.

– 12 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
5

As stated above, a boundary condition of the form (3.6) will be allowed whenever it

renders the symplectic structure finite. Computing the symplectic structure on a hyper-

surface Σ defined by t = constant using (3.22), (3.23), (3.24), and the fact that the vector

modes are divergence-free on Sd−1, we find

ωΣ(δ1A, δ2A) = −
∫

Σ

√
q tµ(δ1A

νδ2Fµν − δ2A
νδ1Fµν)

= −
∫

Σ

√
Ωdd−1zdr rd−5Ωij(δ1αi + δ1βir

2−d)∇̂t(δ2αi + δ2βir
2−d)

−
∫

Σ

√
Ωdd−1zdr r1−d(∇̂tδ1φS)(D2δ2φS)

]

+

∫

∂Σ

√
Ωdd−1z δ1Aδ2F

t + (1↔ 2) + finite, (3.29)

where tµ is the unit normal to Σ and q is the determinant of the metric on Σ. In (3.29),

the terms implicit in “finite” come from the higher order corrections in (3.21), (3.28) and

are explicitly finite for 2 ≤ d ≤ 6, which will be the cases of primary interest.

For the vector modes, the inner product studied in [14] agrees with (3.29) up to a

factor of the mode frequency ω. For the scalar modes, the inner product agrees up to a

factor of ω and a factor of k2
S . Thus, the desired normalizability results are directly related

to those of [14]:

• d ≤ 1: Since the bulk spacetime dimension is ≤ 2, there are no propagating modes

for Aµ. This case is trivial.

• d = 2: There are no vector modes, and the the βS,kS modes fail to be normalizable.

We therefore choose to fix βS = JβS (x) for all αS . From (3.27) we see that for

d = 2 the contribution of αS to F I vanishes at ∂M. Thus, fixing βS is equivalent

to imposing F I
∣∣
∂M = JF I (x), where JF I is independent of the dynamical fields. We

must also keep the pure-gauge field A from growing too quickly at infinity. This is

easily accomplished by imposing the gauge condition ΩijDiAj = O(r2).

• d = 3: All modes αS , βS , αi, βi are normalizable so long as the pure-gage field A is

finite on ∂M. Thus, any boundary condition of the form (3.4) is allowed.

• d = 4 or 5: The αV,kV modes fail to be normalizable and must be fixed. From (3.22)

we see that, up to gauge transformations, this is equivalent to imposing Ai

∣∣
∂M =

JAi(x), where JAi is independent of the dynamical fields.

If one considers only the integral over Σ in (3.29), then all scalar modes are nor-

malizable. However, because F t is divergent for d = 4, 5, there is a potential for

the final term involving the pure gauge field A to alter this conclusion. We remove

this possibility by noting that the above boundary condition on Ai fixes A on the

boundary and by also imposing the gauge condition ΩijDi(Aj − JAj ) = O(1/r). We

may then use any boundary condition of the form

At =
1√
Ω

δWAt

δF t
or F t = − 1√

Ω

δWF t

δAt
, (3.30)
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where WAt is the integral of a local function of F t alone or WF t is the integral of a

local function of At alone.

As noted above, F t is divergent for general values of αS . Nonetheless, we may

display the above boundary conditions in a manifestly finite form by introducing the

quantity F IβS=0, defined by setting βS,kS = 0 in the mode expansion (3.27), (3.28) of

F I . We also introduce F I
βS only := F I − F IβS=0 which is finite on ∂M. We may then

reformulate (3.30) as

At =
1√
Ω

δWA

δF tβS only

or F tβS only = − 1√
Ω

δW̃F

δAt
, (3.31)

where W̃F = WF + F tβS=0At. Choosing WA to be a finite function of F t
βS only or

choosing W̃ to be a finite function of At results in a well-defined boundary condition.

• d ≥ 6: Neither the αV,kV modes nor the αS,kS modes are normalizable. We must

impose AI
∣∣
∂M = JAI (x), with JAI is independent of the dynamical fields.

Ishibashi and Wald studied the case of linear boundary conditions in detail, and ob-

tained interesting results as to which boundary conditions yield stable bulk theories. In

contrast, our desire is to understand the general boundary condition above in terms of

deformations of the dual field theory. We turn to this question in section 4 below.

4. Dual CFT description

For a scalar field with α completely fixed by the boundary condition, the expectation value

of the operator dual to deformations of α is given by (λ+ − λ−)β. The dimension of this

operator is thus related to the scaling of β in the bulk spacetime. Similarly, if we fix the

value of β, the dimension of the operator associated with variations of β is related to the

scaling of α in the bulk spacetime.

Here we study the corresponding relations and the details of the operators dual to a

vector gauge field. At least for d = 3, we expect to have two operators OA,I and OF,I dual

to variations of AI and F I respectively. Now, under a scaling r → Λr, the components of

the gauge field scale as AI → AI , while F I → Λ1−dF I . Thus, dim OA,I = dim F I = d−1,

which has the right dimension to represent a conserved current.

On the other hand, dim OF,I = dim AI = 1. We note that this agrees with the results

of [17] obtained by CFT methods. At first, this may seem like a surprisingly low dimension.

Indeed, the dimension of local vector-like observables in a unitary CFT is bounded below

by d − 1 (see e.g. [44]). The natural conclusion [15, 17] is that OF,I is not strictly a local

observable, but instead represents a U(1) vector gauge field in the CFT.

The details of this picture are discussed below. We present bulk actions appropriate to

each of the boundary conditions stated in section 3 and discuss the corresponding implica-

tions for the dual field theory. In order to neglect certain additional terms which contribute

in higher dimensions, we restrict attention to the case 2 ≤ d ≤ 5, which encompasses the

most interesting cases identified above. The generalization to higher dimensional cases is
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straightforward. We proceed in parallel with our treatment of the scalar field in section 2,

first reviewing the case where one fixes AI or F I alone, and then considering more general

boundary conditions.

4.1 Fixing AI on the boundary

As noted in section (3.2), for d ≥ 3 we may choose the familiar boundary condition

AI = JAI (x), (4.1)

where JAI independent of any dynamical fields. For this boundary condition, consider the

action

SA=const = −1

4

∫

M

√−gFµνF µν +

∫

∂M

√
−hnµAνF µνβS ,βV =0, (4.2)

where F µνβS ,βV =0 is constructed (in analogy with F µν
βS=0 above) by setting βS,kS = βV,kV = 0

in the mode expansion of F µν for all kS , kV . We also define the analogous F I
βS ,βV =0.

From (3.23), (3.22), (3.27), and (3.28), it is clear that F I
βS ,βV =0 is a local function (on

the boundary) of AI
∣∣
∂M and its derivatives. As a result, under a general variation which

fixes boundary conditions at Σ±, we find

δSA=const =

∫

∂M

√
ΩF Iβ onlyδAI , (4.3)

where F Iβ only = F I − F IβS ,βV =0 and we have used the equations of motion for the back-

ground. Clearly, (4.3) vanishes when the variation preserves (4.1). The corresponding dual

operator OIA, satisfies

〈OA,I〉 =
1√
Ω

δSA=const

δAI
= F Iβ only. (4.4)

Of course, conservation of this current follows from gauge invariance, and it is natural

to introduce the notation jI = OA,I . This is the familiar AdS/CFT duality for vector

fields [2].

4.2 Fixing F I on the boundary

For d = 2 and d = 3, we have seen that an allowed boundary condition is to set

F I = JF I (x), (4.5)

where JF I is independent of any dynamical fields. From (3.27), (3.28) we see that, for

such values of d, the condition (4.5) fixes βS,kS and βV,kV but leaves αS,kS and αV,kV
unconstrained. For d = 2 this in fact the only allowed boundary condition in our class.

For the boundary condition (4.5), consider the action

SF=const = −1

4

∫

M

√−gFµνF µν +

∫

∂M

√
−hnµAνF µν . (4.6)

Under a general variation which fixes boundary conditions at Σ±, we find

δSF=const = −
∫

∂M

√
ΩAIδF

I , (4.7)
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where we have used the equations of motion for the background. The result (4.7) vanishes

as required when the variation preserves (4.1). The corresponding dual operator OF,I
satisfies

〈OF,I〉 =
1√
Ω

δSF=const

δF I
= −AI + ∂IΛ. (4.8)

Here Λ is an arbitrary function on ∂M introduced to take account of the fact that,

since (4.8) uses the on-shell action, variations of F I are constrained to satisfy DIF I = 0.

Thus, functional derivatives with respect to F I are inherently ambiguous. This ambiguity

strongly suggests that OF,I is itself a vector gauge field in the dual theory. For d = 3, this

conclusion was reached previously in [15, 19] using related path-integral reasoning. As ob-

served in [17], the well-defined (i.e., gauge invariant) part of OF,I is inherently a non-local

operator and is thus not subject to the bound ∆ ≥ d− 1 on the dimension of local vector

operators.

Recall that for d = 2, 3 the engineering dimension of a vector gauge field is 0, 1/2. In

contrast, dim OF,I = 1, so the anomalous dimension of this operator is 1 for d = 2 and 1/2

for d = 3. From this point of view, it is no surprise that there is no F I = 0 CFT for d > 4;

such theories would necessarily contain operators with negative anomalous dimension. The

case d = 4 is clearly marginal, and the F I = 0 theory fails to be conformal due to the

logarithmic behavior at large r.

4.3 More general boundary conditions

For d = 3 we may consider any boundary conditions (3.4) determined by some WA or WF .

A general class of boundary condition (3.30) is also available in d = 4, 5. There we cannot

consider the theory as a deformation of the F I = 0 theory (which does not exist), but it

does make sense to define the theory through any functional WA = WAt +
∫ √

ΩJAiF
i,

where WAt is an integral of a local function of F t.

Let us therefore consider (in d = 3, 4, 5) such a boundary condition as a deformation

of the AI = constant theory via the action

SWA
= SA=const +BA(A

∣∣
∂M). (4.9)

It is clear that for this action is to be stationary on solutions we must have

1√
Ω

δBA
δAI

= −F Iβ only. (4.10)

It is also clear that BA is local on the boundary and, since F I is conserved, BA is gauge-

invariant at least on-shell. The same calculation as in section 2 now shows that the defor-

mation of the dual field theory action is the Legendre transform of BA:

〈∆SFT〉 = BA −
∫

∂M

√
ΩF Iβ onlyAI . (4.11)

Assuming that our boundary condition associates every F I
β only with some AI , we may

regard 〈∆SFT〉 as a function of F I
β only. One would now like to functionally differenti-

ate (4.11) with respect to F I
β only. However, since we have worked on-shell, our expression
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〈∆SFT〉 is only defined for divergence-free vector fields F I
β only. The result is therefore

1√
Ω

δ〈∆SFT〉
δF Iβ only

= −AI + ∂IΛ. (4.12)

Except for the term ∂IΛ, this is the equation (3.6) satisfied by WA. Thus we find ∆SFT =

WA + constant up to a term of the form
∫
∂M
√

ΩF Iβ only∂IΛ. Since ∂IF
I
β only = 0 in

the large N limit of the dual field theory, this amounts to the expected statement that

∆SFT = WA+constant up to 1/N corrections (and perhaps a boundary term at Σ±). The

behavior at higher order in 1/N is determined by the structure of gauge anomalies in the

bulk theory.

Similarly, for d = 3 one may regard a generic boundary condition as a deformation of

the F I = constant theory via the action

SWF
= SF=const +BF (F

∣∣
∂M), (4.13)

defined by
1√
Ω

δBF
δF I

= AI + ∂IΛ, (4.14)

where Λ is arbitrary. Since the construction of the dual field theory deformation proceeds

on-shell, this ambiguity in BF leads at most to a boundary term at Σ±. Again one finds

that the 〈∆SFT〉 is the Legendre transform of BF .

We wish to regard 〈∆SFT〉 as a functional of AI . Because we now work on-shell,

simply using the boundary condition to replace F I by AI would define 〈∆SFT〉 only for

those AI for which the boundary condition yields divergence-free F I . Let us therefore

consider only boundary conditions for which every AI differs from some Adiv−freeI only

by a gauge transformation, where Adiv−freeI is a connection associated by the boundary

condition to some divergence-free F I . This is the natural analogue of the condition imposed

above in discussing deformations of the AI = constant theory. Since ∆SFT must be gauge-

invariant up to boundary terms, our new assumption allows us to define 〈∆SFT〉 for all AI .

Taking a functional derivative then shows that for any Adiv−free
I we have ∆SFT = WF ,

up to an additive constant and the usual boundary terms at Σ±. Thus, ∆SFT is just the

gauge-invariant version of WF mentioned at the end of section 3.1.

Let us examine the particular case of linear boundary conditions in detail:

F Iβ only = γIJAJ , (4.15)

for some γIJ with inverse γIJ . (For d = 4, 5 we must have γIJ ∝ δItδJt and γIJ does not

exist.) Note that all solutions satisfying (4.15) will also will satisfy the gauge condition

γIJ∂IAJ = 0. (4.16)

For d = 3 we have

WF =
1

2

∫

∂M

√
ΩAIAJγ

IJ =
1

2

∫

∂M

√
ΩAI(γ

IJ −¤−1
γ γIK∂Kγ

JL∂L)AJ , (4.17)
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where ¤γ = γIJ∂I∂J and the inverse is defined using Dirichlet boundary conditions at Σ±.

In the last step, we have used the gauge condition (4.16). Note that this final form of WF

is invariant under gauge transformations which vanish on Σ±.

The relevant (dim = 2) operator (4.17) will generate a renormalization-group flow

away from the F I = 0 CFT. The deformation is non-local when expressed in terms of

gauge-invariant operators, but becomes local in Lorentz gauge. This is consistent with the

fact that the bulk theory in this gauge satisfies local field equations and a local boundary

condition. Although there is no F I = 0 CFT for d = 4, 5, we will discuss a similar UV

fixed point for d = 5 renormalization-group flows (and a logarithmic theory for d = 4) in

section 4.4 below.

Of course, we can also describe a general boundary condition as a deformation of the

AI = 0 CFT by

WA =
1

2

∫ √
ΩF Iβ onlyF

J
β onlyγIJ , (4.18)

which is an irrelvant operator of dimension 2d− 2. As in the case of scalar fields, it is thus

natural to conjecture (for d = 3) that the renormalization-group flow from the F I = 0

theory in the UV has an IR fixed point at the AI = 0 CFT. See [16, 17] for further

discussion of such flows from the CFT point of view.

4.4 Hybrid Boundary conditions and their deformations

As noted above, in d = 4, 5 the boundary conditions F I = 0 are not allowed due to the

failure of the vector modes associated with αV to be normalizable. However, the scalar

modes αS are normalizable, and one may consider ‘hybrid’ boundary conditions of the

form

Ai = JAi(x), F tβ only = JF t(x). (4.19)

For JAi = 0 = JF t , these boundary conditions are again conformal for d = 5, though for

d = 4 conformal invariance is broken by the logarithmic dependence on r. Furthermore,

such boundary conditions may be deformed to yield any relationship of the form (3.31).

These boundary conditions may also be used in d = 3, where other hybrid options also

exist. For simplicity, we confine ourselves here to (4.19), but the other d = 3 hybrid

boundary conditions can be handled similarly.

Consider the action

Shybrid = SA=const −
∫

∂M

√
−hAtF tβ only. (4.20)

Under a general variation which fixes boundary conditions at Σ±, we find from (4.3) that

δShybrid =

∫

∂M

√
Ω
(
F iβ onlyδAi −AtδF tβ only

)
, (4.21)

where we have used the equations of motion for the background. Clearly, (4.21) vanishes

when the variation preserves (4.19). The corresponding dual operators O i
A,, OF,t satisfy

〈OA,i〉 =
1√
Ω

δShybrid

δAi
= F iβ only,

〈OF,t〉 =
1√
Ω

δShybrid

δF t
= −At. (4.22)
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Here there are no restrictions on F t, so that the functional derivative δ
δF t is well-defined.

The result is a set of local operators. For d = 5 these operators have conformal dimensions

dim OA,i = d− 1 and dim OF,t = 1.

Much as with the d = 3 theory with F I = 0, for d = 5 we may regard the hybrid

theory with JAi = 0 = JF t as a UV fixed point which we can deform by relevant operators

(such as
∫
∂M
√

ΩAtAt) to generate a renormalization-group flow. Again, we expect that

this flow leads to an IR fixed point corresponding to the AI = 0 theory. Although the

hybrid theory breaks Lorentz invariance, we see that Lorentz invariance is restored at the

IR fixed point.

Our hybrid theory also has an interesting class of marginal deformations. Given any

anti-symmetric tensor ωIJ , we may consider

Wω =

∫

∂M

√
ΩωitOF,tOA,i = −

∫

∂M

√
ΩωitAtF

i
βonly, (4.23)

which leads to boundary conditions related to (4.19) by a Lorentz transformation. Due to

Lorentz symmetry in the bulk, this operator should be exactly marginal at all orders in

1/N .

5. Discussion

In this work, we have studied field theories dual to AdS theories with deformed boundary

conditions for vector fields. Our analysis used results from [14] concerning the asymptotics

of vector gauge fields in AdSd+1 to read off the general local boundary condition which leads

to a well-defined phase space, and thus to a well-defined quantum theory. We then used the

bulk action and the Schwinger variational principle to construct the associated multi-trace

deformations of a dual CFT. The results are qualitatively similar to those obtained for

general scalar field boundary conditions [7, 8, 23], which were also reviewed in detail.

The results are best summarized separately for each dimension d. The cases d ≤ 1 are

trivial as vector gauge fields have no propagating degrees of freedom.

For d = 2, there is a unique allowed class of local boundary conditions F I = constant.

In particular, the most familiar boundary condition AI = constant is not allowed, as it

would fix all of the normalizable modes. This can be understood intuitively by considering

the description in terms of a dual potential in the bulk, as in [15]. In three bulk dimensions,

this is a massless scalar field defined by ∗F = dφ, and F I = constant corresponds to the

usual boundary condition for the scalar, fixing the slower falloff part.

In the original Maxwell field picture, one expects the dual operator to be another U(1)

vector gauge field, and not the usual R-charge current. However, this vector gauge field is

a dimension 1 operator (i.e., its anomalous dimension is 1 as well), and so has the same

dimension as a conserved current. We also note that the typical AdS3 gauge fields which

arise in AdS3/CFT2 are not strict Maxwell fields, but have Chern-Simons terms which in

d = 2 effectively provide a mixing between AI and F I . Clearly, these Chern-Simons terms

should be taken into account in a complete analysis.

The most general boundary conditions arise for d = 3, and the results are similar

to those for scalar fields near, but slightly above, the Breitenlohner-Freedman bound.
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For d = 3, any local boundary condition relating AI and F I is allowed, so long as it is

determined by a potential, see (3.6). We find Lorentz invariant CFTs associated with the

boundary conditions AI = 0 and F I = 0, and any linear boundary condition is associated

with a renormalization-group flow from the F I = 0 theory (the UV fixed point) to the

AI = 0 theory (the IR fixed point).

As in the case of d = 2, the dual operator in the F I = 0 theory is a vector gauge field

with conformal dimension 1. Using the associated gauge freedom, the relevant operators

that generate such renormalization-group flows can be expressed in two distinct ways.

When expressed in a gauge-invariant form, the operator is non-local. However, with the

gauge condition implied by the general boundary condition, the operator is completely

local. This is consistent with the fact that the bulk theory in this gauge satisfies local field

equations and a local boundary condition. In particular, the bulk advanced and retarded

Green’s functions G±(x, y) vanish unless x and y are connected by a causal curve. Since

the supports of advanced and retarded Green’s functions in the CFT are given by the

boundary limits of those for the bulk Green’s function, we see that the CFT satisfies the

usual notion of causality in this gauge.

In the case d = 4, 5, one must fix the vector part of AI , and there is no F I = 0 theory.

However, the scalar part still admits a variety of boundary conditions. For d = 5, this

leads to a new ‘hybrid’ CFT defined by the boundary conditions F t = 0, Ai = 0, which

explicitly break Lorentz invariance. This CFT is a UV fixed point for renormalization-

group flows that lead to the AI = 0 CFT where Lorentz invariance is restored.4 For d = 4

such boundary conditions lead to a logarithmic field theory. For d ≥ 6, only the AI = 0

theory is allowed.

Since we consider only gauge fields (which necessarily have vanishing mass), the di-

mension dependence above reflects the fact that, in the case of scalar fields, the freedom

to choose non-trivial boundary conditions depends on the relation between the mass m

and the dimension d. In that case one understands the allowed range (2.2) in terms of

the unitarity bound ∆ ≥ (d − 2)/2 on the conformal dimension of scalar operators. If a

CFT with ‘conjugate’ boundary conditions were allowed for scalars with mass above the

upper boundary of (2.2), it would contain an operator violating this bound. Hence, it does

not exist.5 We see that the picture here is similar: any F I = 0 CFT would contain a

vector gauge field of conformal dimension 1. If such a theory were to exist for d > 4, the

corresponding operator would have negative anomalous dimension. The case d = 4 is a

marginal special case. It would be interesting to determine if the failure of the AI = 0

theory for d = 2 and the failure of the hybrid theories for d > 5 can be understood in a

similar way.

In the above, we considered a free Maxwell gauge field. It is interesting, however, to

extrapolate our results to more complicated cases. For simplicity, we focus on the case

d = 3. One immediate generalization is to the SO(8) non-abelian gauge fields of AdS4

4This hybrid CFT and others like it also exist for the case d = 3.
5The case where the upper bound of (2.2) is saturated and ∆ = (d−2)/2 is clearly marginal. In principle

such a CFT is allowed, but the corresponding anomalous dimension would have to vanish. Since for this

case normalizability fails in the bulk, one expect that there is no such AdS/CFT correspondence.
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supergravity [45, 46]. As mentioned in [15], one expects that the asymptotics and thus the

boundary conditions are governed by the linear theory, and that there is again a UV CFT

dual to the boundary conditions F IA = 0, where A is an adjoint SO(8) index. This CFT

appears to contain an SO(8) gauge field in addition to the usual SU(N) gauge field. In

some sense, the usual R-symmetry has been gauged.

Our results for vector gauge fields were based heavily on the analysis of Ishibashi and

Wald [14], who also analyzed boundary conditions for rank 2 tensor fields in the bulk; i.e.,

for the linearized graviton. Again for this case, very general boundary conditions were

allowed for d = 3. Extrapolating our results above, we therefore predict a new Lorentz-

invariant AdS4/CFT3 correspondence where the graviton satisfies ‘conjugate’ boundary

conditions in the bulk. With the usual boundary conditions, the graviton is dual to the CFT

stress-energy tensor. However, for the conjugate boundary conditions the bulk graviton

must be dual to a spin-2 operator with spin-2 gauge invariance; i.e., the CFT3 is in fact a

(conformal) quantum gravity theory! A similar observation was made in [16, 17] working

from the CFT side. It is reassuring that quantum gravity in d = 3 is a finite theory [47 – 50]

due to the lack of propagating degrees of freedom for the graviton [51, 52]. For d = 4, 5

we expect hybrid theories of what might still be called ‘quantum gravity,’ but which break

(local) Lorentz invariance.

A further generalization would be the inclusion of supersymmetry. The theories dis-

cussed above, and those dual to deformations of bulk scalars, are not supersymmetric

because they include no corresponding deformations of the Fermions. However, one ex-

pects the allowed boundary conditions for bulk spinor fields to be qualitatively similar to

those for fields of integer spin, with appropriate combinations providing super-symmetric

theories. We therefore conjecture that the ‘conjugate’ AdS4/CFT3 duality described above

(with quantum gravity in the CFT) can be taken to be maximally supersymmetric. See [53]

for details of d = 3 conformal supergravity.

Finally, one may ask about the stability of such exotic theories. Since such stability

should be guaranteed by supersymmetry, stability itself may be taken as a test of the

self-consistency of the above conjectures. At the linearized level for fields of spin 0,1,2,

this question was fully analyzed for the dynamical modes by Ishibashi and Wald [14].

Interpreting their results in our language, the F I = 0 and hybrid theories are indeed

linearly stable.

After posting the first version of this paper on the hep-th arxiv, we became aware

of a body of literature containing the main results presented here for the case d = 3. In

particular, the fact that ‘conjugate’ boundary conditions in AdS4 are dual to a CFT3 with

a dynamical gauge theory was described in [15] and discussed further in [16 – 19]. Our

work extends this earlier work to other dimensions, and introduces the notion of hybrid

boundary conditions.

The perspective we take is also rather different from that of this previous work.

Whereas [15] started from the CFT description, and focused on the action of SL(2, Z), we

have started from the bulk spacetime description, and considered all the possible bound-

ary conditions such that the symplectic flux (2.6) vanishes through any region R on the

boundary. That is, we start from a fixed notion of the bulk gauge potential and a fixed
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form of the symplectic structure, and then consider all the allowed boundary conditions

for this formulation of the bulk theory. In contrast, the approach of [15] was to consider

the usual AI = 0 boundary condition for the different notions of the bulk gauge potential

related by SL(2, Z) and thus to derive boundary conditions on the original gauge potential.

Note that the symplectic flux defined by the analogue of (2.6) for an SL(2, Z)-transformed

gauge potential Ãµ will in general differ by a boundary term from the one we used here. As

a result, some of the boundary conditions ÃI = 0 will not preserve our choice of symplectic

flux. However, the boundary term in the symplectic structure is just that associated with

the addition to the action of a Chern-Simons boundary term, constructed in general from

both the vector potential and the dual magnetic vector potential. Thus, so long as one is

careful to include boundary terms in the action which provide an appropriate definition

of symplectic flux, one can impose a general boundary condition in terms of any formula-

tion of the bulk theory: for example, the general boundary condition εIJKDIAJ = λKJ F
J

imposed by [15 – 19]. As one would expect, differences in perspective do not change the

physics.
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